Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 210: 115468, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36858182

RESUMO

OBJECTIVES: Daam1 (Dishevelled-associated activator of morphogenesis 1) is a Wnt/PCP signaling protein that engages in cytoskeleton reorganization and is abnormally activated in certain tumors. Daam1 is closely related to cancer metastasis, which is expected to become a target for cancer treatment. However, the natural small molecules targeting Daam1 have not been identified. MATERIALS AND METHODS: We screened several natural small molecules that may bind to Daam1 by Sybyl molecular simulation docking technique. As a first-line drug for the treatment of small cell lung cancer, etoposide was chosen for further investigation. Next, we used Micro Scale Thermophoresis (MST) to verify the interaction of etoposide and Daam1. Small cell lung cancer H446 cells and breast cancer MCF-7 cells were treated with etoposide and subjected to Western blotting to measure the Daam1 expression. The effect of etoposide on cell proliferation was determined by CCK-8 assay in vitro and by a tumor-bearing mouse model in vivo. Wound healing assay and Boyden chamber assay were used to evaluate the role of etoposide in the migration and invasion ability of tumor cells. The effect of etoposide on the microfilament assembly was visualized by immunofluorescence staining with phalloidine. Finally, the possible mechanism of down-regulation of Daam1 expression after etoposide-induced small cell lung cancer cells was detected by a half-life experiment and immunofluorescence staining with lysosomal marker LAMP1. RESULTS: Sybyl molecular modeling docking technique was performed to screen a natural chemical library for molecules that bound to the FH2 domain of Daam1 and found etoposide was virtually interacted with Daam1. MST validated etoposide directly bound to the FH2 domain of Daam1. Etoposide significantly down-regulated the expression of Daam1 in small cell lung cancer H446 cells and breast cancer MCF-7 cells. Moreover, 270 µmol/L etoposide largely inhibited the proliferation, migration, and invasion of H446 cells and MCF-7 cells. Immunofluorescence staining experiments revealed that etoposide induced the disassembly of microfilaments in H446 cells and MCF-7 cells, which were rescued by Daam1 overexpression. In nude mice transplanted with H446 cells, 5, 10, 20 mg/kg etoposide (drug/weight) injected via tail vein largely retarded the proliferation of subcutaneous tumors. Etoposide induced Daam1 to shorten its half-life and enter the lysosome degradation pathway, and eventually leading to the downregulation of Daam1 expression. CONCLUSIONS: Etoposide is a novel natural small molecule targeting Daam1. Etoposide inhibits the proliferation, migration and invasion of small cell lung cancer cells and breast cancer cells, and also suppresses tumor proliferation of small cell lung cancer in vivo.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Animais , Camundongos , Proteínas dos Microfilamentos/metabolismo , Etoposídeo/farmacologia , Etoposídeo/uso terapêutico , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Proteínas rho de Ligação ao GTP/metabolismo , Camundongos Nus , Proteínas Wnt/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Proliferação de Células , Movimento Celular , Linhagem Celular Tumoral
2.
Biol Proced Online ; 24(1): 15, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284262

RESUMO

BACKGROUND: Angiotensin-converting enzyme 2 (ACE2) is known as a tumor suppressor and lowly expressed in most cancers. The expression pattern and role of ACE2 in breast cancer (BC) have not been deeply elucidated. METHODS: A systematic pan-cancer analysis was conducted to assess the expression pattern and immunological role of ACE2 based on RNA-sequencing (RNA-seq) data downloaded from The Cancer Genome Atlas (TCGA). The correlation of ACE2 expression and immunological characteristics in the BC tumor microenvironment (TME) was evaluated. The role of ACE2 in predicting the response to therapeutic options was estimated. Moreover, the pharmacodynamic effect of angiotensin-(1-7) (Ang-1-7), the product of ACE2, on chemotherapy and immunotherapy was evaluated on the BALB/c mouse BC model. In addition, the plasma samples from BC patients receiving neoadjuvant chemotherapy were collected and subjected to the correlation analysis of the expression level of Ang-1-7 and the response to neoadjuvant chemotherapy. RESULTS: ACE2 was lowly expressed in BC tissues compared with that in adjacent tissues. Interestingly, ACE2 was shown the highest correlation with immunomodulators, tumor-infiltrating immune cells (TIICs), cancer immunity cycles, immune checkpoints, and tumor mutation burden (TMB) in BC. In addition, a high level of ACE2 indicated a low response to endocrine therapy and a high response to chemotherapy, anti-ERBB therapy, antiangiogenic therapy and immunotherapy. In the mouse model, Ang-1-7 sensitized mouse BC to the chemotherapy and anti-PD-1 immunotherapy, which revealed its significant anti-tumor effect. Moreover, a high plasma level of Ang-1-7 was associated with a better response to neoadjuvant chemotherapy. CONCLUSIONS: ACE2 identifies immuno-hot tumors in BC, and its enzymatic product Ang-1-7 sensitizes BC to the chemotherapy and immunotherapy by remodeling the TME.

3.
Cell Death Discov ; 7(1): 221, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34453038

RESUMO

Dishevelled-associated activator of morphogenesis 1 (DAAM1) is a critical driver in facilitating metastasis in breast cancer (BrCa). However, molecular mechanisms for the regulation of DAAM1 activation are only partially elucidated. In this research, the expression levels of YWHAZ and DAAM1 were examined by immunohistochemistry (IHC) staining in BrCa tissues. The functional roles of tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ)-DAAM1 axis and their regulator microRNA-613 (miR-613) in BrCa cells and associated molecular mechanisms were demonstrated in vitro. As results, the expression levels of DAAM1 and YWHAZ were significantly upregulated in BrCa tissues compared with normal tissues and remarkably associated with poor prognosis. Besides, DAAM1 and YWHAZ were positively correlated with each other in BrCa tissues. YWHAZ interacted and colocalized with DAAM1 in BrCa cells, which was essential for DAAM1-mediated microfilament remodeling and RhoA activation. Moreover, miR-613 directly targeted both YWHAZ and DAAM1, contributing to inhibiting BrCa cells migration via blocking the complex of YWHAZ-DAAM1. To sum up, these data reveal that YWHAZ regulates DAAM1 activation, and the YWHAZ-DAAM1 complex is directly targeted by the shared post-transcriptional regulator miR-613.

4.
Front Genet ; 12: 680132, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178038

RESUMO

Early growth response family members (EGRs), EGR1-4, have increasingly attracted attention in multiple cancers. However, the exact expression patterns and prognostic values of EGRs in the progress of breast cancer (BRCA) remain largely unknown. The mRNA expression and prognostic characteristics of EGRs were examined by the Cancer Genome Atlas (TCGA), Oncomine, and Kaplan-Meier plotter. Enrichment analyses were conducted based on protein-protein interaction (PPI) network. The Tumor Immune Estimation Resource (TIMER) database and MethSurv were further explored. The protein expression of EGR1 in BRCA was measured by western blotting and immunohistochemistry. The migration of mammary epithelial cells was determined by Boyden chamber assay. The transcriptional levels of EGR1/2/3 displayed significantly low expression in BRCA compared with that in normal tissues, while EGR4 was shown adverse expression pattern. Survival analysis revealed upregulated EGR1-4 were remarkably associated with favorable relapse-free survival (RFS). A close correlation with specific tumor-infiltrating immune cells (TIICs) and several CpG sites of EGRs were exhibited. Immunohistochemistry assays showed that the protein expression of EGR1 was remarkably downregulated in BRCA compared with that in paracancerous tissues. The migration of MCF10A mammary epithelial cells was increased after the silence of EGR1 by siRNA transfection. This study provides a novel insight to the role of EGRs in the prognostic value of BRCA.

5.
J Cancer ; 12(7): 2140-2150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33754012

RESUMO

Tumor microenvironment interacts with gastric cancer (GC) cells and affects tumor development. The communication between GC cells and fibroblasts has not been clearly studied and understood. MiR-10b-5p was found highly expressed in tissue and serum samples of patients with advanced stages (stage III+IV) than that in early stage patients (stage I+II). The expression determination of serum exosomal microRNA was also shown with high expression of miR-10b-5p in GC patients with advanced stages. Dual-luciferase activity assays indicated that miR-10b-5p targeted PTEN in GC cells and KLF11 in fibroblasts. The silence of miR-10b-5p up-regulated the expression of PTEN and repressed PI3K/Akt/mTORC1 signaling in GC cells. Clonogenic assay and MTT assay demonstrated that miR-10b-5p inhibitor could significantly reduce the colony formation and cell viability of GC cells. And the incubation of exosomal miR-10b-5p could increase the proliferation of GC cells. Immunohistochemistry staining revealed that high expression of α-SMA was detected in GC tissues with advanced stages. The overexpression of miR-10b-5p down-regulated KLF11 expression and elevated TGFßR1 expression in fibroblasts. In addition, miR-10b-5p inhibitor blocked the secretion of TGFß1 in GC cells and the directional migration of fibroblasts. Therefore, up-regulated exosomal miR-10b-5p is involved in the interaction of GC cells and fibroblasts in tumor microenvironment via participating in the regulation of TGFß signaling pathway.

6.
Cell Prolif ; 54(3): e12994, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33458919

RESUMO

OBJECTIVES: Cancer cell migration to secondary organs remains an essential cause of death among breast cancer (BrCa) patients. Cell motility mainly relies on actin dynamics. Our previous reports verified that dishevelled-associated activator of morphogenesis 1 (Daam1) regulates invadopodia extension and BrCa cell motility. However, how Daam1 is involved in actin filament assembly and promotes pseudopodia formation in BrCa cells remains unclear. MATERIALS AND METHODS: One hundred human BrCa samples were collected at Women's Hospital of Nanjing Medical University. Immunohistochemistry (IHC) was used to examine Daam1 and Fascin expression. Wound healing and Boyden chamber assays were used to explore cell migration and pseudopodia extension of BrCa cells. Co-IP/pull down and Western blotting were performed to study the physical interaction between Daam1 and Fascin. Immunofluorescence assays were performed to observe whether Daam1 and Fascin were colocalized and mediated actin filament assembly. RESULTS: Fascin was upregulated in BrCa tissues compared with that in paracarcinoma tissues. The downregulation of Fascin caused a decline in pseudopodia formation and cell motility. Moreover, we found that Daam1 interacted with Fascin via formin homology (FH) domains, especially the FH2 domain. Immunofluorescence assays showed that Daam1 and Fascin partially colocalized to actin filaments, and the knockdown of Daam1 or Fascin failed to colocalize to short and curved actin filaments. CONCLUSIONS: Daam1 specifically binds to Fascin via FH domains and cooperatively facilitates pseudopodia formation and cell migration by promoting actin filament assembly in BrCa.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/patologia , Movimento Celular/fisiologia , Forminas/metabolismo , Pseudópodes/patologia , Citoesqueleto de Actina/metabolismo , Neoplasias da Mama/metabolismo , Forminas/farmacologia , Humanos , Pseudópodes/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...